# Adrenal Cortical Inhibitors and Potent Synthetic Estrogens 

W. L. Bencze, L. I. Barsky, W. P. Sopchak, A. A. Renzi, N. Howie, and J. J. Chart<br>Research Department, CIBA Pharmaceutical Company, Division of CIBA Corporation, Summit, New Jersey

Received August 1, 1964


#### Abstract

A number of substituted 1,2-diaryldihydronaphthalenes have been prepared. Substances containing the 3-pyridyl moiety partially inhibited biosynthesis of corticosteroids in the dog. A few of the described compounds were found to be potent estrogens. Their potency was compared with the natural hormone estradiol.


In the course of our continued search for adrenal cortical inhibitors we have prepared and tested a large number of compounds which contained the 3-pyridyl moiety. Among these substances several pinacolonetype ketones were found to inhibit preferentially the $11 \beta$-hydroxylase enzyme system. ${ }^{1,2}$ One of these inhibitors, metyrapone, ${ }^{3}$ is in clinical use as a diagnostic agent for the determination of pituitary reserve.

Another series of compounds with 3-pyridyl groups which have been prepared are the tetralones (I) and dihydronaphthalenes (III). Substances $\mathrm{I} \quad\left(\mathrm{R}_{2}=\right.$ 3-pyridyl) and III ( $\mathrm{R}_{1}=\mathrm{H}$ or $\mathrm{CH}_{3} ; \mathrm{R}_{2}=3$-pyridyl) proved to be preferential inhibitors of the $17 \alpha$-hydroxylase enzyme systems in the adrenal cortex. ${ }^{4,0}$


Compound I ( $\mathrm{R}_{2}=3$-pyridyl) was reported to reduce secretion of aldosterone by 80 to $90 \%$ in men. ${ }^{6}$
( $\mathrm{R}_{2}=3$-pyridyl, ${ }^{4}$ phenyl, ${ }^{7} p$-methoxypheny ${ }^{8}$ ) with Grignard reagents. The free phenolic substances were obtained by demethylation of the corresponding methoxy compounds.

In the case of preparation of $\mathbf{1}$ the hydrated intermediate (II) has been isolated, whereas dehydration occurred spontaneously in the synthesis of $\mathbf{3 , 5}$, and 7 .

The Grignard reactions leading to the desired dihydronaphthalenes were carried out in the usual nanner and offered no difficulties. However, demethylation of the anisole derivatives presented some problems worthy of note. When demethylation of $\mathbf{3}$ was carried out in a boiling mixture of acetic acid and hydrobromic acid, considerable amounts of 2-phenylnaphthalene were isolated. The strong acidic medium at elevated temperature elicited an unusual disproportionation, the first step of which may have been a reversed Frie-del-Crafts reaction. Elimination of substituent $R_{1}$ by protonation occurred concurrently with dehydrogenation of the dihydronaphthyl residue to 2-phenylnaphthalene. Application of the less acidic pyridine hydrochloride as an O-demethylating agent was more reward-

Table I
1,2-DIARYL-3,4-DIHydronaphthalenes

| Compd. |  | $\mathrm{R}_{2}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}_{1}$ |  | Yield. $\%$ | M.p.. | Forinula | $\overline{\mathrm{C}}$ | aled. H | $\mathrm{N}$ | C | Found, H | $\mathrm{N}$ |
| 1 | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ | $3-\mathrm{C}_{5} \mathrm{H}_{4 N}$ | 21 | 130-131 | $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$ | 84.31 | 6.11 | 4.48 | 84.32 | 5.90 | 4.40 |
| 2 | $4-\mathrm{OHC}_{6} \mathrm{H}_{4}$ | $3-\mathrm{C}_{5} \mathrm{H}_{4-}$ | 81 | 296-298 | $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}$ | 84.25 | 5.72 | 4.68 | 84.37 | 5.78 | 4.63 |
| 3 | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 84 | 131-132 | $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}$ | 88.42 | 6.45 |  | 88.67 | 6.29 |  |
| 4 | $4-\mathrm{OHC}_{6} \mathrm{H}_{4}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 63 | 128-130 | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ | 88.56 | 6.08 |  | 88.36 | 6.01 |  |
| 5 | $\mathrm{C}_{6} \mathrm{H}_{5}$ | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ | 56 | 149-150 | $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}$ | 88.42 | 6.45 |  | 88.17 | 6.44 |  |
| 6 | $\mathrm{C}_{6} \mathrm{H}_{5}$ | $4-\mathrm{OHC}_{6} \mathrm{H}_{4}$ | 52 | 154-155 | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ | 88.56 | 6.08 |  | 88.66 | 5.96 |  |
| 7 | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ | 62 | 168-169 | $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2}$ | 84.17 | 6.47 |  | 88.35 | 6.46 |  |
| 8 | $4-\mathrm{OHC}_{6} \mathrm{H}_{4}$ | $4-\mathrm{OHC}_{6} \mathrm{H}_{4}$ | 43 | 258-260 | $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$ | 84.05 | 5.77 |  | 84.34 | 5. 61 |  |

The chemistry and hormonal or antihormonal activity of eight compounds of the type III, where both $R_{1}$ and $R_{2}$ are aryl groups, serve as the subject matter of this report.

Chemistry.-The compounds listed in Table I were prepared by treating the appropriate tetralones I

[^0]ing and afforded the desired dihydronaphthalenes 2, 4, 6 , and 8 in moderate yields.

The structures assigned to compounds 1-8 are in agreement with their infrared and ultraviolet spectra. As additional structural proof, 4 was remethylated under mild conditions. The methylated product was found to be identical with 3 . Thus, no migration of substituents or shift of double bond occurred during demethylation with pyridine hydrochloride.

Pharmacology. Steroid Biosynthesis.-Inhibition of corticosteroid hormones in vivo was assessed in the dog by the adrenal cannulation technique. Compound $\mathbf{1}$
(7) N. Campbell and D. Kidd. J. Chem. Soc., 2154 (1954).
(8) M. S. Hidayetulla, R. C. Shah, and T. S. Wheeler, ibid., 111 (1941)
decreased cortisol secretion to $10 \%$ of controls and increased corticosterone secretion to $300 \%$ of control values during a 2 -hr'. period following the administration of a $20-\mathrm{mg} . / \mathrm{kg}$. dose intravenously. No increase in secretion of Reichstein's compound s was observed. This change in corticosteroid secretion pattern is similar to that observed following administration of substance $\mathrm{I}\left(\mathrm{R}_{2}=3\right.$-pyridyl) and, therefore, the compound could be classified as a preferential inhibitor of $17 \alpha$-hydroxylation as discussed by Chart, et al." Compound 2 was not tested in the dog because its low solubility precluded intravenous administration.

Uterotropic Activity.- The cight eompounds shown in Table I were suspended in a vehicle containing carboxymethylcellulose and given by subcutaneous injection for 3 davs to immature female rats of the CIBA strain weighing $40-50 \mathrm{~g}$. On the fourtl day the animals were sacrificed, and the uteri were removed, expressed of flaid, cleaned of adhering tissue, and immediately weighed on a Roller-Smith balance. The results, as seen in Table II, indicate the amount of test com-
T.ible Il

Uferotrophic Activity or

| 1,2-Diaryl-3,4-dihydronaphthalexes |  |
| :---: | :---: |
| Compd. | Driee, y/kg. ${ }^{\text {a }}$ |
| 1 | 25,000 |
| 2 | 25.000 |
| 3 | 200.00 |
| 4 | 20.0 |
| - | 32.0 |
| ${ }^{6}$ | 20.) 1 ) |
| 7 | 100.0 |
| 8 | 25.0 |

${ }^{a}$ Dose that produces the same activity as $2.0 \mathrm{\gamma} / \mathrm{kg}$. of estradiol.
pound required to produce uterine stimulation equivalent to that produced by subcutaneous administration of $2.0 \gamma / \mathrm{kg}$. of estradiol for 3 days.

Antiestrogenic Activity.-No antiestrogenic response was elicited when any of the eight compounds, in a variant dose range of $250 \gamma^{\prime} \mathrm{kg}$. to 50 mg . kg ., were given concomitantly with estradiol to immature female rats for 3 days. Basic phenohe ethers derived from 4 were found to possess antiestrogenic activity only when marked uterotropic stimulation with larger doses of estradiol ( $10 \gamma_{i} \mathrm{~kg}$.) was attained in inmature female rats. Duncan, et al., also reported antiestrogenic activity of basic ethers of 4 when administered to ovariectomized rats. ${ }^{9}$

## Experimental ${ }^{10}$

3,4-Dihydro-1-p-methoxyphenyl-2-(3-pyridyl)naphthalene (1). --To a Grignard reagent prepared from 2.4 g . ( 0.1 g .-atorn) of magnesium and 18.7 g . ( 0.1 mole) of $p$-nethoxybromobenzene in 100 nil. of ether was added dropwise with cooling and stirring 15.0 g . ( 0.067 mole) of 3,4-dihydro-2-(3-pyridyl)-1( 2 H )-naphthalenone. ${ }^{4}$ After completed addition the reaction mixture was heated under reflux for 4 hr . and allowed to stand at room temperatıre overnight. Upon decomposition with aqueous ant-

[^1]moninn chloride solntion, a crystalline precipitate formed whicl, was collected, washed with water, find recrustallized from ethanol ta afiond the intermediate II ( $\mathrm{R}_{2}=p$-methexymens: $\mathrm{R}_{2}=3$-pyridyl), in.p. $190-190^{\circ}$, (6.2 g.

This intermediate prodnel (is) () g. was dissolved in a mixime
 flased liar 1 har. After relnoval of the ethand muder redneced pressure, the aridie solunim, wals wemmazed with concentrated ammoninm hedroxide and the precipitate was exaracted hatee times with ehby acetote. The combined extracts were washed with water and sammed NaCl solntion, dried (Nashof, filtered,

 pure produce melted at 130-131*.

Componnds 3, 3, and 7 lave leen isolated directly afon docomposition of the corresponding Crignard connlexes.

3,4-Dihydro-1-p-hydroxyphenyl-3-(3-pyridyl)naphthalene (2).
Anhydrous pyridine hydrochloride was prepared by gradually: heating a mixthre of 30 ml. of pyridine and $3 x$ nul. of concentrated HCl matil arstalline pyridine hydrochloride appereal in ihn condenser. At this point, the temperature of the wapon phase was $216^{\circ}$ : and hath of the buh $260^{\circ}$. Heating was mow dis rom, timued and wheo whe iemperatnre of the liquid prydince hydre-
 in ir les ewirling the flask. Heating was resmined and he reaction mixture was genly refluxed for 30 mins. The temperatore , the bath was kept between 24 and $255^{\circ}$. Nos demethymion necrured below $30^{\circ}$. The reation, minture wats allowed to cond ti) about $100-100^{2}$, pmed into ice water, and buffered with 20 g. of sodimn aceate. The precipitated crude prodnct was orllected and air dried, 11 .p. 290 290 $20^{\circ}$. Roerystallization from, at minture of dimethylformanide, ethamol, fund water $4: 1: 1$
 for analysis.

Compond 4 was prepared repanedly by denethylation oi 3 in pyridine hydrochloride. In contrast to the phemolie compounds 2, 6, and 8, purificaion ol phemel 4 required several arystalizations. Nevertheless, sperinems of 4 melting in the temperanme range of $120 \cdot 126^{2}$ were fonnd io be sulficientiy pure by analyets and they finnishod varions O-alkytated derivatives in good yieh, which, in turn, could be easily phrified.
 (ontanimat, of 4 when 3 was demethybicel in pridine hymochlorideat 260 ( lath temperathre).

Phened 6 has heen isulated in wor ersalline foms, in.p. 1:30
 mudepressed at the higher melting point, $154-15 \bar{j}^{\circ}$.

2-Phenylnaphthalene...Componnd 3 (2.tig.) was reflineed in:;
 for 6 lir. The renction mixture was poned into ice water, ;end the erystalline precipiate was collected. Rempraillization inn in

 This prodnct was idenified as 2 -phenyhaphathalene liy ansalysis, spectral data, and modepressed mixtire melting poini witi an
 bell.: No attempt was made to isolate 4.

Remethylation of 4 to 3. substance 4 (2.t) g.) wats convericel to its sodimn salt in 10 ml. of dimethytormanide s addition of 320 ng . of sodimn hydride ( 53 C mineral oil snspension). After the cessation of hydrogen evolution 1.0 .5 g . of methyl iorlicle in 10 mal. of colnene was added with stiming and anding in an ioe balla. Stirring was contimed for 4 hir an room iemperatime and the reandon mixthre was allowed to sambat mom remperanme
 was collected ancl washed with benzene. The filtate was concentrated to $: 3+1$ inl. in cucho and dilnted with water. The precipitated erdorlese prodnct was collerted and recrysiallized from ethanol to afford $1 . \mathrm{ig}$. of 3 , 11 p . $130-132^{\circ}$. A sample was reerystallized from ethanol for analysis.
 88.50: H, 6.47 .

This prodnct was tomed we be identical with 3, as prepared from 2 -phenytetralone and $p$-methoxyphemynagesinn bromide, by mixture melting peinn and spperimpessable infrated alsorption sperem.


[^0]:    (1) W. L. Bencze and M. J. Allen, J. Med. Pharm. Chem., 1, 395 (1959).
    (2) J. J. Chart and H. Sheppard, ibid., 1, 407 (1959),
    (3) Metopirone ${ }^{\circledR}$.
    (4) W. L. Bencze and L. I. Barsky, J. Med. Pharm. Chem., 5, 1298 (1962).
    (5) J. J. Chart, H. Sheppard, T. Mowles, and N. Howie, Endocrinology, 71. 479 (1962): Chem, Abstr., 57, 17303 (1962).
    (6) T. Bledsoe, D. P. Island, A. Riondel, and G. W. Liddle, Clin. Res., 11, 214 (1963),

[^1]:    (9) G. W. Duncan, S. C. Lyster, J. J. Clark, and D. Lednicer, Proc. Soc. Exptl. Biol. Med., 112, 439 (1963).
    (10) Melting points were deterinined in an electrically heated aluminum block.

